Following is the list of statistics formulas used in the Tutorialspoint statistics tutorials. Each formula is linked to a web page that describe how to use the formula.
A
· Adjusted R-Squared – R2adj=1−[(1−R2)(n−1)n−k−1]Radj2=1−[(1−R2)(n−1)n−k−1]
· Arithmetic Mean – x¯=∑xNx¯=∑xN
· Arithmetic Median – Median = Value of N+12)th itemN+12)th item
· Arithmetic Range – Coefficient of Range=L−SL+SCoefficient of Range=L−SL+S
B
· Best Point Estimation – MLE=STMLE=ST
· Binomial Distribution – P(X−x)=nCxQn−x.pxP(X−x)=nCxQn−x.px
C
· Chebyshev’s Theorem – 1−1k21−1k2
· Circular Permutation – Pn=(n−1)!Pn=(n−1)!
· Cohen’s kappa coefficient – k=p0−pe1−pe=1−1−po1−pek=p0−pe1−pe=1−1−po1−pe
· Combination – C(n,r)=n!r!(n−r)!C(n,r)=n!r!(n−r)!
· Combination with replacement – nCr=(n+r−1)!r!(n−1)!nCr=(n+r−1)!r!(n−1)!
· Continuous Uniform Distribution – f(x) = {1/(b−a),0,when a≤x≤bwhen x<a or x>b{1/(b−a),when a≤x≤b0,when x<a or x>b
· Coefficient of Variation – CV=σX×100CV=σX×100
· Correlation Co-efficient – r=N∑xy−(∑x)(∑y)[N∑x2−(∑x)2][N∑y2−(∑y)2]√r=N∑xy−(∑x)(∑y)[N∑x2−(∑x)2][N∑y2−(∑y)2]
· Cumulative Poisson Distribution – F(x,λ)=∑xk=0e−λλxk!F(x,λ)=∑k=0xe−λλxk!
D
· Deciles Statistics – Di=l+hf(iN10−c);i=1,2,3…,9Di=l+hf(iN10−c);i=1,2,3…,9
· Deciles Statistics – Di=l+hf(iN10−c);i=1,2,3…,9Di=l+hf(iN10−c);i=1,2,3…,9
F
· Factorial – n!=1×2×3…×nn!=1×2×3…×n
G
· Geometric Mean – G.M.=x1x2x3…xn−−−−−−−−−−√nG.M.=x1x2x3…xnn
· Geometric Probability Distribution – P(X=x)=p×qx−1P(X=x)=p×qx−1
· Grand Mean – XGM=∑xNXGM=∑xN
H
· Harmonic Mean – H.M.=W∑(WX)H.M.=W∑(WX)
· Harmonic Mean – H.M.=W∑(WX)H.M.=W∑(WX)
· Hypergeometric Distribution – h(x;N,n,K)=[C(k,x)][C(N−k,n−x)]C(N,n)h(x;N,n,K)=[C(k,x)][C(N−k,n−x)]C(N,n)
I
· Interval Estimation – μ=x¯±Zα2σn√μ=x¯±Zα2σn
L
· Logistic Regression – π(x)=eα+βx1+eα+βxπ(x)=eα+βx1+eα+βx
M
· Mean Deviation – MD=1N∑|X−A|=∑|D|NMD=1N∑|X−A|=∑|D|N
· Mean Difference – Mean Difference=∑x1n−∑x2nMean Difference=∑x1n−∑x2n
· Multinomial Distribution – Pr=n!(n1!)(n2!)…(nx!)P1n1P2n2…PxnxPr=n!(n1!)(n2!)…(nx!)P1n1P2n2…Pxnx
N
· Negative Binomial Distribution – f(x)=P(X=x)=(x−1r−1)(1−p)x−rprf(x)=P(X=x)=(x−1r−1)(1−p)x−rpr
· Normal Distribution – y=12π√e−(x−μ)22σy=12πe−(x−μ)22σ
O
· One Proportion Z Test – z=p^−popo(1−po)n√z=p^−popo(1−po)n
P
· Permutation – { {^nP_r = \frac{n!}{(n-r)!} }{ {^nP_r = \frac{n!}{(n-r)!} }
· Permutation with Replacement – nPr=nrnPr=nr
· Poisson Distribution – P(X−x)=e−m.mxx!P(X−x)=e−m.mxx!
· probability – P(A)=Number of favourable casesTotal number of equally likely cases=mnP(A)=Number of favourable casesTotal number of equally likely cases=mn
· Probability Additive Theorem – P(A or B)=P(A)+P(B)P(A∪B)=P(A)+P(B)P(A or B)=P(A)+P(B)P(A∪B)=P(A)+P(B)
· Probability Multiplicative Theorem – P(A and B)=P(A)×P(B)P(AB)=P(A)×P(B)P(A and B)=P(A)×P(B)P(AB)=P(A)×P(B)
· Probability Bayes Theorem – P(Ai/B)=P(Ai)×P(B/Ai)∑ki=1P(Ai)×P(B/Ai)P(Ai/B)=P(Ai)×P(B/Ai)∑i=1kP(Ai)×P(B/Ai)
· Probability Density Function – P(a≤X≤b)=∫baf(x)dxP(a≤X≤b)=∫abf(x)dx
R
· Reliability Coefficient – Reliability Coefficient, RC=(N(N−1))×((Total Variance −Sum of Variance)TotalVariance)Reliability Coefficient, RC=(N(N−1))×((Total Variance −Sum of Variance)TotalVariance)
· Residual Sum of Squares – RSS=∑ni=0(ϵi)2=∑ni=0(yi−(α+βxi))2RSS=∑i=0n(ϵi)2=∑i=0n(yi−(α+βxi))2
S
· Shannon Wiener Diversity Index – H=∑[(pi)×ln(pi)]H=∑[(pi)×ln(pi)]
· Standard Deviation – σ=∑ni=1(x−x¯)2N−1−−−−−−−−√σ=∑i=1n(x−x¯)2N−1
· Standard Error ( SE ) – SEx¯=sn√SEx¯=sn
· Sum of Square – Sum of Squares =∑(xi−x¯)2Sum of Squares =∑(xi−x¯)2
T
· Trimmed Mean – μ=∑Xin
Comments are closed.